æé©å¶åŸ¡2
æŠèŠ ä»åãããã€ããã¯ã¹ãæã€ã·ã¹ãã ãžã®æé©å¶åŸ¡ãèããã èãæ¹ã¯ååã®å Žåãšããã»ã©å€ãããããã€ããã¯ã¹ãå¶çŽæ¡ä»¶ãšããŠèãããšãå¿ èŠæ¡ä»¶ãšããŠãäºç¹ã®å¢çæ¡ä»¶ããã€åŸ®åæ¹çšåŒãå°åºãããã ä»åã¯ãã®å°åºãšãåé¡ãè§£ãããã®æ°å€èšç®æ³ã玹ä»ããã æç§æžã¯åŒãç¶ãE. Brysdn, Jr. Yu-Chi Ho, âApplied Optimal Controlâ, CRC Press, 1975ãçšããã 颿£æéã·ã¹ãã ã®å Žå åé¡ éç·åœ¢ã®å·®åæ¹çšåŒã§è¡šãããã€ãã®ã·ã¹ãã ãèããã $$ x(i+1) = f(x(i),u(i)), \quad x(0):\text{given}, \quad i = 0,\cdots,N-1. \tag{2.2.1} $$ ãã ãã$x(i)\in R^n$ã¯ç¶æ ãã¯ãã«ã$u(i)\in R^m$ã¯å ¥åãã¯ãã«ã§ããã 以äžã®è©äŸ¡é¢æ° $$J = \phi(x(N)) + \sum_{i=0}^{N-1}L(x(i),u(i))$$ ãæå°åãã$u$ãæ±ãããã å¿ èŠæ¡ä»¶ã®å°åº $(2.2.1)$ã¯çåŒå¶çŽæ¡ä»¶ãšããŠæããããã ãã®ãããã©ã°ã©ã³ãžã¥ä¹æ°$\lambda(i)$ãçšã㊠$$\bar J := \phi(x(N)) + \sum_{i=0}^{N-1}\left[ L(x(i),u(i)) + \lambda^T(i+1){f(x(i),u(i)) - x(i+1)} \right] \tag{2.2.3}$$ ãèããã ããã«ããã¢ã³ $$H^i := L(x(i),u(i)) + \lambda^T(i+1)f(x(i),u(i))$$ ãå®çŸ©ãããšã$(2.2.3)$㯠$$\bar J = \phi(x(N)) -\lambda^T(N)x(N) + \sum_{i=1}^{N-1}\left[ H^i - \lambda^T(i)x(i) \right] +H^0$$ ãšæžãæããããã ...