æé©å¶åŸ¡1
æŠèŠ éç·åœ¢æé©å¶åŸ¡ã®å匷ãå§ããã å®ã¯å»å¹Žææ¥ã§åäœã¯ååŸããã®ã ããã©ãã»ãšãã©èŠããŠããªããåç¶ãªã®ã§ãã¯ããããããçŽãããšã«ããã æç§æžã¯E. Brysdn, Jr. Yu-Chi Ho, âApplied Optimal Controlâ, CRC Press, 1975ãçšããã åŒçªå·ã¯æç§æžã«å£ã£ãã ä»åã¯ãšããããããã€ããã¯ã¹ãªãã®æé©ååé¡ã«ã€ããŠããã£ãšåŸ©ç¿ããã å¶çŽãªãæå°ååé¡ åé¡ æ±ºå®å€æ°$u=[u_1 \ \cdots \ u_m]^T\in R^m$ãæ±ºããããšã§ãè©äŸ¡é¢æ° $$L(u):R^m\rightarrow R$$ ãæå°åãããã å¿ èŠæ¡ä»¶ $L$ã$C^2$çŽã®é¢æ°ã§ãããšãã$u$ãæå°å€ã§ããã®ããã®å¿ èŠæ¡ä»¶ã¯ $$\frac{\partial L}{\partial u} = 0 \tag{1.1.3}$$ åã³ $$\frac{\partial^2 L}{\partial u^2} \succeq 0$$ ãæãç«ã€ããšã§ããã $(1.1.3)$ãæºãã$u$ãåçç¹ãšããã å忡件 $u$ã屿æå°ã§ããããã®å忡件ã¯$(1.1.3)$åã³ $$\frac{\partial^2 L}{\partial u^2} \succ 0$$ ãæãç«ã€ããšã§ããã æ°å€èšç®æ³ åŸé æ³ (gradient decent) ããã¥ãŒãã³æ³ (newton method) ãå§ããæ§ã ãªæ°å€èšç®æ³ãçšããããã çåŒå¶çŽä»ãæå°ååé¡ åé¡ æ±ºå®å€æ°$u\in R^m$ãæ±ºããããšã§çåŒå¶çŽ $$ f(x,u)=0 \tag{1.2.2} $$ ã®ããšãè©äŸ¡é¢æ° $$L(x,u): R^n\times R^m\rightarrow R$$ ãæå°åããããããã§$x=[x_1 \ \cdots \ x_n]^T\in R^n, \ f=[f_1 \ \cdots \ f_n]^T:R^n\times R^m\rightarrow R^n$ãšãããã ...