æŠèŠ ååã¯ãããããã£ãŒããã©ã¯ãŒãã®æé©å¶åŸ¡ã«ã€ããŠèããã ããªãã¡ãããåææå»$t_0$ãšåæç¶æ
$x(t_0)$ãäžã€äžãããããšãã«ãçµç«¯æå»$t_f$ãŸã§ã«å ããæé©å
¥å$u(t)$ãæ±ããããšããã ãããŠãæé©ãª$u(t)$ãæ±ããããã«ã¯ããªã€ã©ãŒã»ã©ã°ã©ã³ãžã¥æ¹çšåŒãšããåŸ®åæ¹çšåŒãè§£ããªããŠã¯ãªããªãããšã瀺ãããã ãã®ã¢ãããŒãã§ã¯ãåæç¶æ
$x(t_0)$ãå°ãã§ãå€åãããšããªã€ã©ãŒã»ã©ã°ã©ã³ãžã¥æ¹çšåŒãæ°ãã«è§£ãçŽãå¿
èŠãããããšãŠãæéãæããã
ããã§ããããã¯ããã£ãŒãããã¯ã®æé©å¶åŸ¡ã«ã€ããŠèããã ããªãã¡ãä»»æã®æå»$t$ãšç¶æ
$x(t)$ãäžãããããšãã«ãçµç«¯æå»ãŸã§ã«å ããæé©å¶åŸ¡$u(x,t)$ãæ±ãããã®ã§ããã
åé¡ é£ç¶æéã®éç·åœ¢ãã€ããã¯ã¹ $$\dot x = f(x,u,t)$$ ã«ããããã·ã¹ãã ã«å¯ŸããŠãç¶æ
ãã£ãŒãããã¯$u=u(x,t)$ãèšèšããããšã§ãè©äŸ¡é¢æ° $$J = \phi(x(t_f),t_f) + \int_{t}^{t_f}L(x(\tau),u(\tau),t)d\tau$$ ãæå°åãããã ããã§åæå€$x,t$ã¯ä»»æã§ãããšããã
å¿
èŠæ¡ä»¶ $J$ãæå°åãã$u$ãæºããã¹ãæ¹çšåŒãšããŠããã«ãã³ã»ã€ã³ãã»ãã«ãã³æ¹çšåŒ (HJB equation : Hamilton-Jacobi-Belman equation)ãç¥ãããŠããã ããã¯ããã«ããã¢ã³ $$ H(x,\lambda,u,t):=L(x,u,t)+\lambda^t_f f(x,u,t) $$ åã³å€é¢æ° $$ J^o(x,t) = \min_u J $$ ã«å¯Ÿã㊠$$ \frac{\partial J^o}{\partial t} + \min_u H\left(x,\frac{\partial J^o}{\partial x},u,t \right) = 0 $$ ãšããŠèšè¿°ãããã ãã®ååŸ®åæ¹çšåŒã®å¢çæ¡ä»¶ã¯ $$ J^o(x(t_f),t_f) = \phi(x(t_f),t_f) $$ ã§ããã
å°åº å€é¢æ°$J^o$ã¯ããæå»$t$ãšããã®æç¹ã§äžããããã·ã¹ãã ã®ç¶æ
$x$ã«å¯ŸããŠããã®æå»ä»¥é$t_f$ãŸã§ã«æé©ãªå
¥åãå ããããšã«ããæå°åããããšãã®ã³ã¹ããã衚ãã ãã«ãã³ã®æé©æ§ã®åçã«ããåŸ®å°æå»$\Delta t$ã«å¯Ÿã㊠$$ J^o(x(t),t) = \min_u\left\{ J^o(x(t+\Delta t), t+\Delta t) + \int_t^{t+\Delta t} L(x(\tau),u(\tau),\tau)d\tau \right\} $$ ãæãç«ã€ã ãã®åŒãæå³ãããšããã¯ããæå»$t$ãã$t_f$ãŸã§ã«æé©ãªå
¥åãæ±ãããã®ãšããæå»$t+\Delta t$ãã$t_f$ãŸã§ã«æé©ãªå
¥åããã§ã«æ±ãŸã£ãŠãããšãã«ãæå»$t$ãã$t+\Delta t$ãŸã§ã®æé©ãªå
¥åãæ±ãããã®ã¯äžç·ããšããããšã $J^o(x(t+\Delta t),t+\Delta t)$ãããŒã©ãŒå±éãããš $$ J^o(x(t+\Delta t),t+\Delta t) = J^o(x(t),t) + \left\{ \frac{\partial J^o}{\partial x}f(x,u,t) + \frac{\partial J^o}{\partial t} \right\}\Delta t + O(\Delta t^2) $$ ããã代å
¥ãããš $$ J^o(x(t),t) = \min_u\left\{ J^o(x(t),t) + \left\{ \frac{\partial J^o}{\partial x}f(x,u,t) + \frac{\partial J^o}{\partial t} \right\}\Delta t + \int_t^{t+\Delta t} L(x(\tau),u(\tau),\tau)d\tau + O(\Delta t^2) \right\} $$ $J^o$åã³$\frac{\partial J^o}{\partial t}$ã¯$u$ã«éœã«äŸåããªããããæ¬ãåºããŠ$\Delta t\rightarrow 0$ãšãããš $$ \frac{\partial J^o}{\partial t} + \min_u\left\{ L(x,u,t) + \frac{\partial J^o}{\partial x}f(x,u,t) \right\} $$ ãåŸãããã æ®ãã¯ããã«ããã¢ã³åã³ã©ã°ã©ã³ãžã¥ä¹æ°ã®å®çŸ©ãçšããŠçµäºã
...